00-f5 Title and Logo 00-f6
 guide Contents
 siteinfo Site Info


Chapter 18

18-01
Introduction

18-02
Incidental Hazards

External Objects
MR Equipment
Implants and Devices
Other Considerations 18-03
Physiological Hazards

Static Magnetic Fields
Varying Fields
Radiofrequency Fields 18-04
Regulations and Legal Aspects


18-03-01 Physiological Hazards: Static Magnetic Fields

In every MR examination, a large static magnetic field is applied. Field strengths for clinical equipment can vary between 0.2 and 3.0 T; to date, experimental imaging units have a field strength of up to 17.5 T.

There are a number of biophysical effects whereby static magnetic fields might influence biological processes or an organism's behavior.

Vestibular system. Already in 1988 a group at the General Electric Corporate Research and Development Center described in an abstract sensations of vertigo, nausea, and metallic taste in a group of volunteers. There was statistically significant evidence for field-dependent effects which were greater at 4 T than at 1.5 T. In addition, they found magnetic phosphenes caused by motion of the eyes within the static field. The results were published in a full paper in 1992 and considered proof that there is a sufficiently wide margin of safety for the exposure of patients to the static fields of conventional magnetic resonance equipment operated at 1.5 to 2 T and below (see Table 18-04) [⇒ Schenck 1992].


Table 18-04:
Definition of field strength.
Definitions set by EMRF in 1989.

Ultralow-field machines operate at a field strength below 0.1 T, low field between 0.1 and 0.5 T, medium field between 0.5 and 1 T, high field between 1 and 2 T, and ultrahigh field machines above 2 T.


More than twenty years later, scientific articles and two PhD theses from the Netherlands throw new light on hazards of ultra-high field magnetic resonance equipment operating at fields higher than 2 Tesla. They and others describe some reversible decline in cognitive function as well as symptoms of nystagmus, vertigo, postural instability, nausea, and metallic taste in employees working with MRI at fields of 3 T and, to a higher degree, at 7 T [⇒ Roberts, ⇒ Schaap, ⇒ van Nierop]. One third of the severely ill patients enrolled in a clinical study at 7 Tesla complained about vertigo and nausea caused by the equipment [⇒ Springer E 2016].

These symptoms, with the exception of the observed change of taste, hint to an effect of the magnetic field on the vestibular system that is responsible for the sense of balance, spatial orientation, and posture.

This hypothesis was substantiated by Houpt in 2007. He and his colleagues observed that rats did not enter a 14.1 T magnet. After a first climb into 14.1 T, most rats refused to re-enter the magnet or climb past the 2 T field line. Detection and avoidance required the vestibular apparatus of the inner ear, because after surgical removal of the labyrinth rats readily traversed the magnet [⇒ Houpt].

It is not advisable to pre­scribe hist­amine-blockers such as di­phen­hydra­mine to pre­ven­ti­vely miti­gate the strength of vertigo and nausea at ultra-high static magnetic fields, although this pro­ce­dure has been pro­pos­ed to "pave the way to even higher field strength" [⇒ Thormann]. The patient should rather be referred to a 1.5 T machine.

Some additional results are con­tra­dic­to­ry and can­not be ex­plain­ed by bio­phy­sical or bio­che­mi­cal mecha­nisms. In some cases, the effects ob­serv­ed must be at­tri­but­ed to other causes which had not been con­si­der­ed by the re­sear­chers in the setup of the ex­peri­men­tal pro­to­col.

Volume forces – shear forces. Volume forces are dependent on tissue susceptibility and the product of field strength and spatial field gradient. Their threshold for human tolerance is still unknown. There is also limited knowledge about the susceptibility differences between iron containing tissues in the cerebral cortex and surrounding tissues and possible shearing issues at ultra-high magnetic fields, for instance subtle variations in the magnetic properties of brain tissue, possibly reflecting varying iron and myelin content [⇒ Fukunaga].

Nerve conductivity. As early as 1893, the first results of experiments about a possible influence of static magnetic fields upon nerve tissue were obtained [⇒ D'Arsonval 1893]. These and all later experiments showed negative results. There are apparently no effects on the conduction of impulses in the nerve fiber up to a field strength of 0.1 T generated by either changing the electrical resistance or the potential of the excitation [⇒ Abashin, ⇒ American College of Radiology].

The minimum magnetic field required to produce observable effects seems to be quite large. Theo­re­ti­cal considerations argue that fields of 24 T are required to produce a 10% re­duc­tion of nerve impulse conduction velocity [⇒ Wikswo].

Orientation changes of macromolecules, liv­ing cell subcellular components, and magneto-biomaterials in the brain. A re-orientation caused by diamagnetic anisotropy is seen in highly ordered biological structures, such as sickle cells and retinal rods in magnetic fields of 0.35 and 1.0 Tesla, respectively. While it is not possible to orient the individual constituent molecules with such fields, these structures can be oriented as a whole by summing the anisotropy over a large number of mutually oriented molecules. These results are reproducible [⇒ Hong].

It is still unknown what happens to magneto-biomaterials in the human brain at high/ultra-high fields; it is also still unknown what their function is – whether they are, e.g., bioreceptors or biosensors [⇒ Kirschvink, ⇒ Schultheiss].

Biogenic magnetite in the human brain was detected as a minimum of 5 million single-domain crystals per gram for most tissues in the brain and greater than 100 million crystals per gram for pia and dura. Magnetic property data indicate the crystals are in clumps of between 50 and 100 particles. Apparently, such nanoparticles can also be incorporated into the brain by breathing in polluted air.

This is one of the many topics that need further evaluation before exposure of volunteers or patients to ultra-high field magnetic fields.

Membrane transportation and blood sedimentation. Other potential ha­zards from static fields include, for instance, membrane transportation and blood sedimentation induced by the field. As Mansfield and Morris pointed out, static magnetic field gradients of 0.01 T/cm make no significant dif­fe­ren­ce in the membrane transport processes. The influence of a static magnetic field upon erythrocytes is not sufficient to provoke sedimentation, as long as there is a normal blood circulation [⇒ Mansfield, Morris].

Changes in enzyme kinetics. Up to 45 Tesla, no important effects on enzyme systems have been observed.

Magnetohydrodynamic effects. In a model of the human vasculature it was shown that changes in hydrostatic pressure in the presence of a large static magnetic field (10 Tesla) were less than 0.2% [⇒ Keltner]. These changes are claimed to be caused by interaction of in­du­ced electrical potentials and currents within a solution, e.g. blood, and an elec­tri­cal volume force causing a retardation in the direction opposite to the fluid flow. This decrease in flow velocity must be compensated for by an elevation in pressure. At 1.5 T no significant changes are ex­pect­ed [⇒ Budinger 1986, ⇒ Tenforde].

Cardiac changes. A field-strength-dependent increase in the amplitude of the ECG in rats has been observed during exposure to homogeneous stationary magnetic fields. The minimum level at which augmentation could be observed was 0.3 T; at 2.0 T, the increase was by an average of 400%. The augmentation in T-wave amplitude occurred instantaneously and was immediately reversible after exposure to the magnetic field ceased (Figure 18-09). There have been no abnormalities in the ECG in the later follow-up [⇒ Gaffey]. The authors suggest that augmentation of the signal amplitude in the T-wave segment may result from a superimposed electrical potential. At field strengths of between 7 and 10 T, no arrhythmia could be proven [⇒ Battocletti].


Figure 18-09:
Flowing blood can behave as a moving con­duc­tor in a magnetic field. The field can induce a vol­tage that will be highest during the part of the cardiac cycle with the fastest blood velocity. This coincides with the T- wave of the ECG and enhances the T-wa­ve, potentially mimicking pathology.


According to the national radiation protection and health agencies, it is un­li­ke­ly that cardiac fibrillation would occur as a result of induced flow potential in the major blood vessels or heart chambers at this level of field intensity. No cir­cu­la­to­ry alterations coincide with the ECG changes. Therefore, no biological risks are believed to be associated with them.

Genetic effects. There have been several reports that static magnetic fields may provoke genetic mutations, changes in growth rate and leukocyte count and other effects; however, some results of these experiments could be reproduced, others could not [⇒ Schwartz, ⇒ Vijayalaxmi].

Nevertheless, some authors claim it be un­li­ke­ly that mutagenic effects are introduced by fields lower than 1.0 T [⇒ Mansfield, Morris], in addition, there is no convincing evidence for a genotoxic effect from MRI up to 7 T [⇒ Budinger 2016], although, for instance, Takashima and collaborators described genotoxic effects in DNA-repair defective mutants of drosophila melanogaster after 24-hour exposure to static magnetic fields of 2, 5, and 14 T fields [⇒ Takashima 2004].

According to the National Radiological Protection Board of the United King­dom [⇒ Radiological Protection Board 1992], the available experimental evidence weighs against electromagnetic fields acting directly to damage cellular DNA, implying that these fields may not be capable of initiating cancer in a manner that parallels that of ionizing radiation and many chemical agents (for instance ultra-violet and ionizing radiation (x-ray CT), virus infections, and temperature as well as beta blockers used by cardiovascular patients and MRI contrast agents).

No reports have been published that persons exposed to at commonly used magnetic fields, including personnel at MR departments, have a higher incidence of genetic da­ma­ge to their children than found in the average population. However, due to public pressure pregnancy is sometimes considered a relative contra-indication for MRI.


18-03-02 Physiological Hazards: Varying Magnetic Fields

Varying magnetic fields are necessary for the localization of nuclei with magnetic properties within the sample.

A well described effect of varying magnetic fields is the so-called magnetic phosphenes, which were first observed in the late 19th century [⇒ D'Arsonval 1896]. Phosphenes are stimulations of the optic nerve or the retina, producing a flashing sensation in the eyes. They seem not to cause any damage in the eye or the nerve. They are attributed to magnetic-field variations. They are difficult to create in common clinical systems and may occur in a threshold field change of between 2 and 5 T/s. Motion-induced magnetic phosphenes were easily visible at 4 Tesla [⇒ Schenck].

The electrogustatory effect is not connected to the presence of metallic tooth-fillings. An exact threshold could not be determined. It seems to be set off by the motion of the head, depending on rate and direction.

Peripheral nerve stimulation. The mean threshold levels for various stimulations are 3,600 T/s for the heart, 900 T/s for the respiratory system, and 60 T/s for the peripheral nerves. They increase with field [⇒ Budinger 1991].

Guidelines in the United States limit switching rates at a factor of three below the mean threshold for peripheral nerve stimulation.

Varying magnetic fields are also used to stimulate bone heal­ing in non-unions and pseudarthroses. The reasons why pulsed magnetic fields support bone heal­ing are not completely understood [⇒ Basset]. Rapid echo-planar imaging and high-performance gradient systems create fast-switching magnetic fields that are claimed to stimulate muscle and nerve tissues.


18-03-03 Physiologigal Hazards: Radiofrequency Fields

Radiofrequency pulses are used in MR imaging for the excitation of the nuclei.

The influence of ex­tre­me­ly low-frequency (ELF) fields has been blamed for numerous reactions, occurrences and diseases in animals and humans, for instance cancers, Alzheimer's disease, or even causing a decrease in milk production in cows.

The most likely best known publications among articles about this topic are those associating an increase in the incidence of leu­ke­mia with the location of buildings close to high-current power lines with ELF electromagnetic radiation of 50-60 Hz, and industrial exposure to electric and magnetic fields. In 1979, Nancy Wertheimer and Ed Lee­per reported an association between childhood cancer and “electrical current configuration” of houses in Denver, Colorado [⇒ Wertheimer]. This publication pro­vok­ed a torrent of questions and research programs [e.g., ⇒ Milham]. To date, there is neither a final confirmation of a connection nor is there a corroboration of the contrary. Anyway, a transposition of such effects to MRI seems rather unlikely, if they exist at all.

Because of the nearly unlimited number of variables it is nearly impossible to collect unbiased statistics in huge populations; for instance, the death toll caused by air pollution is orders of magnitude higher than the claimed toll by leukemia caused by ELF.

Heat deposition. RF fields may interact with both tissues and foreign bodies, such as metallic im­plants, in the pa­tient. The main result of this type of interaction is heat. The higher the frequency (and thus magnetic field), the larger will be the amount of heat developed; and the more ionic the biochemical environment in the tissue, the more energy that will be deposited as heat [⇒ Led, ⇒ Radiological Protection Board 1992].

This effect is well-known for homogeneous model systems, but the complex structure of various human tissues makes detailed theoretical calculations very difficult, if not impossible. RF power deposition and thus heating are increased by changing MR parameters such as decreasing the RF repetition time, adjusting flip angles, and changing matrix size [⇒ Bottomley, ⇒ Mollerus].

In several in vitro and in vivo low and medium field experiments, no life threa­ten­ing increase in tem­pe­ra­ture could be shown [⇒ Budinger 1986, ⇒ Liboff]. Even in high magnetic fields, no local temperature increase greater than 1° C occurred. The highest skin temperature increase described in humans reached 2.1° C [⇒ Shellock 1994], however in the uterus of pregnant animals at ultra-high field (3 Tesla) 2.5° C were measured [⇒ Cannie].

Eddy currents may heat up implants and thus may cause local heating. In vitro worst-case experiments performed with a large and very thin thermally in­su­la­ted aluminium sheet at 1.5 T after 15 minutes of exposure showed a tem­pe­ra­tu­re rise of only 0.08°C.

Hot spots may occur in the exposed tissue. At present, it seems unlikely that such hot spots in the body exist, but to avoid or at least minimize effects of such theoretical complications, the frequency and the power of the RF irradiation should be kept at the lowest possible level.

The specific absorption rate (SAR) helps to estimate RF heating effects. It increases with field strength, radiofrequency power and duty cycle, as well as trans­mit­ter coil type and body size. In high and ultrahigh fields, some pulse sequences or procedures may create a higher SAR than recommended by the agencies. Some researchers point out that SAR might be a poor indicator of magnetic resonance-related implant heating [⇒ Nitz]. However, SAR is regulated and MR operators are required to follow these regulations [⇒ Regulations and Legal Aspects].


spaceholder red

inkpot
Times change and new facts turn up, also in MRI safety.
A comment ...

spaceholder 600 spaceholder 600

LogoTop
LogoBottom
space
00-f1
space
00-f2
space
00-f3
space
00-f4
space
00-f7
space
00-f1
space
00-f2
space
00-f3
space
00-f4
space
00-f7
space
00-f1
space
00-f2
space
00-f3
space
00-f4
space
00-f7
space
00-f1
space
00-f2
space
00-f3
space
00-f4
space
00-f7
space
00-f1
space
00-f2
space
00-f3
space
00-f4